
Supplement 2 (of 2) to: Characterizing dye bias in
microarray experiments

Dobbin, K.K.∗, Kawasaki, E.S.†, Petersen, D.W.†and Simon, R.M.∗

Proof that the existence of gene-and-sample specific dye bias implies that
assumptions that cannot be verified from the microarray data alone are
required for comparing samples

1 Summary

In a single sentence the argument is that the model with three-way (dye by gene by
sample) interactions require constraint equations for the interactions, but that these
constraint equations implicitly make unverifiable assumptions about the nature of the
gene-and-sample-specific dye bias, which thus makes valid statistical inference impossible.

2 Preliminary discussion

Dye-swapping individual arrays seems to be an intuitively appealing method of removing
gene-and-sample-specific dye bias from estimates. And, if one fits and ANOVA model to
the data with a gene-and-sample-specific dye bias effect in it, there will be no trouble
estimating parameters and reaching conclusions. But the ANOVA approach relies on
constraint equations to make parameters identifiable. Usually these constraint equations
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are of no concern, but in the case of gene-and-sample-specific dye bias, we argue, they are
of concern. The reason the constraint equations matter is that, unlike in the gene-specific
dye bias case, the estimate of gene expression differences between the samples will be
different depending on whether Cy3, Cy5 or the average of the two is the scale on which
comparisons are made. Intuitively, this is because, in switching from Cy3 scale to a Cy5
scale, one adds different amounts to each sample (by definition of sample-specific dye bias),
and hence one reaches different conclusions on the Cy3 scale than on the Cy5 scale.

3 Notation and general model

Fix a particular gene. For sample s, on array a, tagged with dye d, on replicate r, let Ysadr

be the normalized, background-adjusted, log-intensity with expectation:

E [Ysadr] = µsad = µ + Ss + Aa + Dd + SDsd.

Here µ is the grand mean, Ss is the sample effect, Aa is the “spot” effect, Dd is the
gene-specific dye bias, and SDsd is the gene-and-sample-specific dye bias.

4 Two samples in a single dye system

First, suppose we have two samples and one dye. In this case, the “spot” effects are no
longer estimable, but suppose they are known.

µ1a1d = µ + S1 + Aa1 + Dd + SD1d

µ2a2d = µ + S2 + Aa2 + Dd + SD2d

µ1a1d − µ2a2d = Aa1 − Aa2 + S1 − S2 + SD1d − SD2d

Note that the last equation reveals a problem with the model. The sample specific dye bias
is not eliminated from the difference. More generally, the model is not identifiable. To see
this more clearly, note that we can rewrite the model,
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µ1ad = µ + (S1 + SD1d) + Aa + Dd

µ2ad = µ + (S2 + SD2d) + Aa + Dd

Then note that if there is only one dye, S1 and SD1d are always observed together. And
similarly, S2 and SD2d are always observed together. And they do not cancel out of
differences. So we can only hope to ever estimate the sums, S1 + SD1d and S2 + SD2d.
There is no way from observed data to estimate the quantities S1 and S2 without further
model assumptions.

A reasonable assumption we might make in the case of just one dye is that, for the single
dye d = 1, we have SD11 = SD21 = 0. This assumes that the gene does not exhibit
sample-specific dye bias. More generally, one might assume that if a single dye is used,
variation in the (normalized, background adjusted) log-intensities across arrays for a gene
tagged with that dye accurately tracks variation of the underlying log-gene-expression. This
is the assumption typically made when analyzing single dye systems, such as Affymetrix.

5 Two samples in a two-dye system

Now expand to a two-dye system. The mean equations are:

µ1a1 = µ + S1 + Aa + D1 + SD11

µ1a2 = µ + S1 + Aa + D2 + SD12

µ2a1 = µ + S2 + Aa + D1 + SD21

µ2a2 = µ + S2 + Aa + D2 + SD22

This is the typical analysis of variance two-way layout. Note that the model is highly
over-parameterized and not identifiable. Constraint equations for the parameters reduce
the model dimension and result in an identifiable model.
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Our argument is that constraints on the interaction terms necessitate assumptions about
the relation between the underlying gene expression and the intensities that are
unverifiable.

To simplify the situation, we will assume that µ and Aa are all known.

First, consider the constraint equation on the interaction term we gave earlier, viz.
SD11 = SD21 = 0. The constraints assumes that dye 1 accurately tracks gene expression
variation but dye 2 may not. The usual model constraints on the samples and dyes are:
S1 + S2 = 0, D1 + D2 = 0. Adding this to the previous two constraints on the interactions,
gives a total of four constraints. There are now 8 unknowns
(S1, S2, D1, D2, SD11, SD12, SD21, SD22), 4 constraints, and 4 equations. So there is a
single unique solution. Call this model M1:

µ1a1 = µ + S1 + Aa + D1

µ1a2 = µ + S1 + Aa + D2 + SD12

µ2a1 = µ + S2 + Aa + D1

µ2a2 = µ + S2 + Aa + D2 + SD22

Now consider instead the constraint equations 0 = SD12 = SD22, and the same model
constraints S1 + S2 = 0, D1 + D2 = 0. Here we assume that dye 2, instead of dye 1,
accurately tracks with gene expression. Call this model M2.

µ1a1 = µ + S1 + Aa + D1 + SD11

µ1a2 = µ + S1 + Aa + D2

µ2a1 = µ + S2 + Aa + D1 + SD21

µ2a2 = µ + S2 + Aa + D2

Since the Aa and µ are known, the notation can be simplified further. Model M1 becomes

k11 = µ1a1 − µ− Aa = S1 + D1
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k12 = µ1a2 − µ− Aa = S1 + D2 + SD12

k21 = µ2a1 − µ− Aa = S2 + D1

k22 = µ2a2 − µ− Aa = S2 + D2 + SD22.

Solving the equations:

S1 =
1

2
[k11 − k21]

S2 =
1

2
[k21 − k11]

D1 =
1

2
[k11 + k21]

D2 = −1

2
[k11 + k21]

SD12 = k12 + k21

SD22 = k11 + k22

Model M2 becomes

k1a1 = µ1a1 − µ− Aa = S1 + D1 + SD11

k1a2 = µ1a2 − µ− Aa = S1 + D2

k2a1 = µ2a1 − µ− Aa = S2 + D1 + SD21

k2a2 = µ2a2 − µ− Aa = S2 + D2.

Solving the equations:

S1 =
1

2
[k12 − k22]

S2 =
1

2
[k22 − k12]
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D2 =
1

2
[k12 + k22]

D1 = −1

2
[k12 + k22]

SD11 = k11 + k22

SD21 = k12 + k21

Finally, noting that under model M1 we have S1 − S2 = k11 − k21, while under model M2

we have S1 − S2 = k12 − k22, we can see that the models are not equivalent.

Similarly, if instead of assuming one dye tracked best with gene expression, we assumed
that the average over the two dyes tracked best with gene expression, then this would give
rise to a different set of equations and a different set of solutions.

Therefore, the estimates of the differences between the samples will depend on the
constraints used in the model. But there is no a priori reason to pick one set of constraints
because we do not know the true relation between the underlying gene expression and the
fluorescent intensity under each dye.


